Mathematics Grade 1 2011 Maryland Common Core State Curriculum Framework Adapted from the Common Core State Standards for Mathematics # **Contents** | Topic | Page
Number(s) | |---------------------------------------------------------------------------|-------------------| | Introduction | 4 | | How to Read the Maryland Common Core Curriculum Framework for First Grade | 5 | | Standards for Mathematical Practice | 6 - 8 | | Key to the Codes | 9 | | Domain: Operations and Algebraic Thinking | 10 - 13 | | Domain: Number and Operations in Base Ten | 14 - 17 | | Domain: Measurement and Data | 18 - 19 | | Domain: Geometry | 20 - 21 | ### Introduction The Maryland Common Core State Standards for Mathematics (MDCCSSM) at the first grade level specify the mathematics that all students should study as they prepare to be college and career ready by graduation. The first grade standards are listed in domains (Operations & Algebraic Thinking, Number and Operations in Base Ten, Measurement & Data, and Geometry). This is not necessarily the recommended order of instruction, but simply grouped by appropriate topic. ### How to Read the Maryland Common Core Curriculum Framework for First Grade This framework document provides an overview of the Standards that are grouped together to form the Domains for Grade One. The Standards within each domain are grouped by topic and are in the same order as they appear in the Common Core State Standards for Mathematics. This document is not intended to convey the exact order in which the Standards will be taught, nor the length of time to devote to the study of the different Standards The framework contains the following: - **Domains** are intended to convey coherent groupings of content. - **Clusters** are groups of related standards. A description of each cluster appears in the left column. - Standards define what students should understand and be able to do. - Essential Skills and Knowledge statements provide language to help teachers develop common understandings and valuable insights into what a student must know and be able to do to demonstrate proficiency with each standard. Maryland mathematics educators thoroughly reviewed the standards and, as needed, provided statements to help teachers comprehend the full intent of each standard. The wording of some standards is so clear, however, that only partial support or no additional support seems necessary. - Standards for Mathematical Practice are listed in the right column. ### **Formatting Notes** - Black words/phrases from the Common Core State Standards Document - Purple bold strong connection to current state curriculum for this course - Red Bold- items unique to Maryland Common Core State Curriculum Frameworks - Blue bold words/phrases that are linked to clarifications - **Green bold** standard codes from other courses that are referenced and are hot linked to a full description Page 5 of 21 ### **Standards for Mathematical Practice** The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy). ### 1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. ### 2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. ### 3. Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to Page 6 of 21 Maryland Common Core State Curriculum Framework for Grade 1 Mathematics June 2011 determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. ### 4. Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. ### 5. Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. ### 6. Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. ### 7. Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. ### 8. Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y-2)/(x-1)=3. Noticing the regularity in the way terms cancel when expanding (x-1)(x+1), $(x-1)(x^2+x+1)$ and $(x-1)(x^3+x^2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. ### Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction. The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics. Page 8 of 21 ## Codes for Common Core State Standards (Math) Standards – K – 12 | Grades K | 7–8 | Applicable Grades | |------------|---------------------------------------------------|---------------------------| | CC | Counting & Cardinality | К | | EE | Expressions & Equations | 6, 7, 8 | | F | Functions | 8 | | G | Geometry | K, 1, 2, 3, 4, 5, 6, 7, 8 | | MD | Measurement & Data | K, 1, 2, 3, 4, 5 | | NBT | Number & Operations (Base Ten) | K, 1, 2, 3, 4, 5 | | NF | Number & Operations (Fractions) | 3, 4, 5 | | NS | Number System | 6, 7, 8 | | OA | Operations & Algebraic Thinking | K, 1, 2, 3, 4, 5 | | RP | Ratios & Proportional Relationship | 6, 7 | | SP | Statistics & Probability | 6, 7, 8 | | Modeling | <u> </u> | | | No Codes | | Not determined | | | High School | | | Algebra | (A) | | | A-APR | Arithmetic with Polynomial & Rational Expressions | 8 -12 | | A-CED | Creating Equations | 8 -12 | | A-REI | Reasoning with Equations & Inequalities | 8 -12 | | A-SSE | Seeing Structure in Expressions | 8 -12 | | Functio | ns (F) | | | F-BF | Building Functions | 8 -12 | | F-IF | Interpreting Functions | 8 -12 | | F-LE | Linear, Quadratic & Exponential Models | 8 -12 | | F-TF | Trigonometric Functions | Not determined | | Geometr | y (G) | | | G-C | Circles | Not determined | | G-CO | Congruence | Not determined | | G-GMD | Geometric Measurement & Dimension | Not determined | | G-MG | Modeling with Geometry | Not determined | | G-GPE | Expressing Geometric Properties with Equations | Not determined | | G-SRT | Similarity, Right Triangles & Trigonometry | Not determined | | | & Quantity (N) | | | N-CN | Complex Number System | Not determined | | N-Q | Quantities | Not determined | | N-RN | Real Number System | 8 -12 | | N-VM | Vector & Matrix Quantities | Not determined | | Statistics | | | | S-ID | Interpreting Categorical & Quantitative Data | 8 -12 | | S-IC | Making Inferences & Justifying Conclusions | Not determined | | S-CP | Conditional Probability & Rules of Probability | Not determined | | S-MD | Using Probability to Make Decisions | Not determined | | Modeling | 9 | | | No Codes | | Not determined | | DOMAIN: Op | erations and Algebraic Thinking | | |------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Cluster | Standard | Mathematical | | | | Practices | | Represent and solve problems involving addition and subtraction. | Standard: 1.OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. (SC 1) | Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. | | | | Construct viable Arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. | | DOMAIN: Op | erations and Algebraic Thinking | | |--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Cluster | Standard | Mathematical | | | | Practices | | Understand and apply properties of operations and relationship between addition and subtraction. | Standard: 1.OA.3 Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties.) Examples: If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property of addition) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10, which equals 12. (Associative property of addition.) Essential Skills and Knowledge • Knowledge of and ability to use the properties of operations (CCSS, Page 90, Table 3) Standard: 1.OA.4 Understand subtraction as an unknown-addend problem. For example, subtract 10 − 8 by finding the number that makes 10 when added to 8. Essential Skills and Knowledge • Ability to connect addition to subtraction (Inverse Operation) • Ability to apply the strategy to think addition rather than take away: Rather than 9 - 6 = □ ask how many would you add to six to equal nine? • Ability to use concrete models with manipulatives to find the unknown | 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable Arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. | | Add and subtract within 20. | Standard: 1.OA.5 Relate counting to addition and subtraction (e.g., by counting on 2 to add 2). (SC 1) Essential Skills and Knowledge • Knowledge of and ability to use addition counting strategies (e.g., Counting All, Counting On, Counting On from the Larger Number) to solve problems • Knowledge of and ability to use | | | DOMAIN: Op | erations and Algebraic Thinking | | |-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------| | Cluster | Standard | Mathematical
Practices | | | subtraction counting strategies (Counting Up To, Counting Back From) to solve problems | Make sense of problems and persevere in solving them. | | | Standard: 1.OA.6 Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on, making ten (e.g. $8+6=8+2+4$, which leads to $10+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1$, which leads to $10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, | 2. Reason abstractly and quantitatively. 3. Construct viable | | | one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding $6 + 7$ by creating the known equivalent $6 + 6 + 1 = 12 + 1$, which equals 13). | others. 4. Model with mathematics. | | | Essential Skills and Knowledge See the skills and knowledge that are state in the Standard. | 5. Use appropriate tools strategically.6. Attend to precision. | | Work with addition and subtraction equations. | Standard: 1.0A.7 Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6 = 6$, $7 = 8 - 1$, $5 + 2 = 2 + 5$, $4 + 1 = 5 + 2$. | 7. Look for and make use of structure.8. Look for and express regularity in repeated reasoning. | | | Essential Skills and Knowledge Knowledge that an equal sign represents the relationship between two equal quantities Knowledge that the quantities on both sides of the equation are equal in value | repeated reasoning. | | | Standard: 1.OA.8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the question true in each of the equations 8 + ? = 11, 5 = ? - 3, 6 + 6 = ?. (SC 1) | | |
Cluster | perations and Algebraic Thinking Standard | Mathematical | |-------------|--|--| | G. G. G. C. | J. G. | | | | Ability to represent the problem in multiple ways including drawings and or objects/manipulatives (e.g., counters, unifix cubes, Digi-Blocks, number lines) Ability to take apart and combine numbers in a wide variety of ways Ability to make sense of quantity and be able to compare numbers Ability to use flexible thinking strategies to develop the understanding of the traditional algorithms and their processes Ability to solve a variety of addition and subtraction word problems (CCSS, Page 88, Table 1) Ability to use □ or ? to represent an unknown in an equation | 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable Arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. | | Domain: Numl | ber and Operations in Base Ten | | |-------------------------------|--|--| | Cluster | Standard | Mathematical
Practices | | Extend the counting sequence. | Standard: 1.NBT.1 Count to 120 starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. Essential Skills and Knowledge Counting: Ability to produce the standard list of counting words in order Ability to represent one-to-one correspondence/match with | Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable Arguments and | | | concrete materials Reading: Ability to explore visual representations of numerals, matching a visual representation of a set to a numeral Ability to read a written numeral Writing: Ability to represent numerals in a variety of ways, including tracing numbers, repeatedly writing numbers, tactile experiences with numbers (e.g., making numbers out of clay, tracing them in the sand, and writing on the white board or in the air) | critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. | | Understand place value. | Standard: 1.NBT.2 Understand that the two digits of a two-digit number represent amounts of tens and ones. (SC 1) Essential Skills and Knowledge • Ability to use base ten manipulatives (e.g., base ten blocks, Digi-Blocks, Unifix Cubes, ten frames, interlocking base ten blocks) to represent two-digit numbers • Knowledge of the connection between numerals, words, and quantities • Knowledge that two-digit numbers are composed of bundles of tens and leftover ones • Ability to count by tens and ones | | | Domain: Numb | per and Operations in Base Ten | | | |--------------|--|----|------------------------| | Cluster | Standard | | Mathematical | | | | Dr | actices | | | | | Make sense of | | | Standard: 1.NBT.2a | 1. | | | | Understand the following as a special case: 10 | | problems and | | | can be thought of as a bundle of ten ones | | persevere in solving | | | called a "ten." | | them. | | | Essential Skills and Knowledge | | | | | Ability to use base ten manipulatives | 2. | Reason abstractly and | | | (e.g., base ten blocks, Digi-Blocks, | | quantitatively. | | | Unifix Cubes, ten frames, | | | | | interlocking base ten blocks) to
build and compare ten ones and ten | 3. | Construct viable | | | bullu allu compare ten ones allu ten | | Arguments and | | | | | critique the | | | Standard: 1.NBT.2b | | reasoning of | | | Understand the following as a special case: | | others. | | | The numbers from 11 to 19 are composed of a | 4. | Model with | | | ten and one, two, three, four, five, six, seven, | | mathematics. | | | eight, or nine ones. (SC 1) | | | | | Essential Skills and Knowledge | 5. | Use appropriate tools | | | Ability to use base ten manipulatives | | strategically. | | | (e.g., base ten blocks, Digi-Blocks, | | | | | Unifix Cubes, ten frames, | 6. | Attend to precision. | | | interlocking base ten blocks) to build | | | | | and compare 11 to 19 | 7. | Look for and make | | | Ability to match the concrete | | use of structure. | | | representations of 11 through 19 with | | | | | the numerical representations | 8. | Look for and express | | | | | regularity in repeated | | | Standard: 1.NBT.2c | | reasoning. | | | Understand the following as a special case: | | _ | | | The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 | | | | | refer to one, two, three, four, five, six, seven, | | | | | eight, or nine tens (and 0 ones). | | | | | (SC 1) Essential Skills and Knowledge | | | | | Ability to use base ten manipulatives | | | | | (e.g., base ten blocks, Digi-Blocks, | | | | | Unifix Cubes, ten frames, | | | | | interlocking base ten blocks) to build | | | | | and model the counting by tens | | | | | | | | | | Standard: 1.NBT.3 | | | | | Compare two two-digit numbers based on | | | | | meanings of the tens and ones digits, recording | | | | | the results of comparisons with the symbols >, | | | | Domain: Numb | per and Operations in Base Ten | | |---|---|--| | Cluster | Standard | Mathematical Practices | | Use place value understanding and properties of operations to add and subtract. | =, and <. Essential Skills and Knowledge Ability to apply their understanding of the value of tens and ones in order to compare the magnitude of two numbers. Ability to use base ten manipulatives to represent the numbers and model the comparison of their values Ability to represent their reasoning about the comparison of two two-digit numbers using pictures, numbers, and words Ability to Using Cardinality to compare the quantity of the numbers with models Ability to use Ordinality to compare the placement of the numbers on the number line or 100s chart Knowledge of the symbols >, =, < and their meaning Standard: 1.NBT.4 Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones, and sometimes it is necessary to compose a ten. Essential Skills and Knowledge Knowledge of addition and subtraction fact families Ability to model addition and subtraction using base ten manipulatives (e.g., base ten blocks, Digi-Blocks, Unifix cubes) and explain the process Knowledge of place value Ability to use a variety of methods that could involve invented, flexible | 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. | | | or standard algorithmic thinking | | | Domain: Number and Operations in Base Ten | | | |---|--|-----------------------------------| | Cluster | Standard | Mathematical | | | | Practices | | | · | | | | subtraction; relate the strategy to a written method and explain the reasoning used. Essential Skills and Knowledge Ability to use base ten manipulatives, number lines or hundreds charts to model finding 10 less and explain reasoning Knowledge of addition and subtraction fact families Ability to model subtraction using base ten manipulatives (e.g., base ten blocks, Digi-Blocks, Unifix cubes) and explain the process Knowledge of place value and skip counting by 10 | regularity in repeated reasoning. | | DOMAIN: Measu | rement and Data | | |---|--|---| | Cluster | Standard | Mathematical Practices | | Measure lengths indirectly and by iterating length units. | Standard: 1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. | Make sense of problems and persevere in solving them. | | | Knowledge of the concept of transitivity (e.g. the understanding that if the length of object A is longer | 2. Reason abstractly and quantitatively. | | | than the length of object <i>B</i> and the length of object <i>B</i> is longer than the length of object <i>C</i> , than the length of object <i>A</i> is longer than the length of object <i>C</i>) | 3. Construct viable arguments and critique the reasoning of others. | | | Standard 1.MD.2 Express the length of an object as a whole number of length units, by laying multiple copies | 4. Model with mathematics. | | | of a shorter object (the length unit) end to end;
understand that the length measurement of an
object is the number of same-size length units
that span it with no gaps or overlaps. <i>Limit to</i> | 5. Use appropriate tools strategically. | | | contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps. | 6. Attend to precision. | | | Essential Skills and Knowledge | 7. Look for and make use of structure. | | | Knowledge that length is the distance between the two endpoints of an object Ability to identify a unit of measure Knowledge of nonstandard (e.g., paper clips, eraser length, toothpicks) as well as standard units of measurement Ability to subdivide the object by the unit (placing the unit end to end with no gaps or overlaps next to the object (iterating). | 8. Look for and express regularity in repeated reasoning. | | Tell and write time. | Standard: 1.MD.3 Tell and write time in hours and half-hours using analog and digital clocks. (SC 1) | | | DOMAIN: Measurement and Data | | | |-------------------------------|--|------------------------| | Cluster | Standard | Mathematical Practices | | | Essential Skills and Knowledge Ability to apply knowledge of fractional wholes and halves to telling time Ability to equate a number line to 12 with the face of a clock Ability to match time on a digital clock with that on an analog clock | | | Represent and interpret data. | Standard: 1.MD.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (SC 1) Essential Skills and Knowledge • Ability to sort data into separate categories • Ability to display data in appropriate graph, such as a picture graph • Ability to answer questions about the data such as 'Which category has more?' 'Which category has less?' 'What is the favorite snack of our class?' 'How many more stickers does Sam have than John?' | | | Domain: Geometry | | | | |--|--|--|--| | Cluster | Standard | Mathematical
Practices | | | Reason with shapes and their attributes. | Standard: 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. Essential Skills and Knowledge • Ability to sort shapes (e.g., attribute blocks, polygon figures) by shape, number of sides, size or number of angles • Ability to use geoboards, toothpicks, straws, paper and pencil, computer games to build shapes that possess the defining attributes • Ability to explain how two shapes are alike or how they are different from each other Standard: 1.G.2 Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. Essential Skills and Knowledge • Ability to use concrete manipulatives (e.g., pattern blocks, attribute blocks, cubes, rectangular prisms, cones, cylinders, geoboards, paper & pencil,) to create composite shapes from 2 or 3 dimensional shapes Standard: 1.G.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares. (SC 1) | 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable Arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. | | | Cluster | Seometry Standard | Mathematical | |---------|--|---| | | | Practices | | | Essential Skills and Knowledge Knowledge that the whole or unit has been partitioned into equal—sized portions or fair shares Ability to apply the concept of sharing equally with friends lays the foundation for fractional understanding. | 1. Make sense of problems and persevere in solving them. | | | Ability to model halves and fourths with concrete materials | 2. Reason abstractly and quantitatively. | | | | 3. Construct viable arguments and critique the reasoning of others. | | | | 4. Model with mathematics. | | | | 5. Use appropriate tools strategically. | | | | 6. Attend to precision. | | | | 7. Look for and make use of structure. | | | | 8. Look for and express regularit in repeated reasoning. |